PARTONS  
PARtonic Tomography Of Nucleon Software
Public Member Functions | Public Attributes | List of all members
LiSK::LiSK< numtype >::constants< T > Struct Template Reference

Constants. More...

Public Member Functions

 constants (const size_t Li_n)
 C'stor. More...
 

Public Attributes

std::vector< T > HarmNum
 Harmonic numbers H(n) for n=1,2,3,... More...
 
std::vector< T > PosZeta
 zeta(n) for n=0,(1),2,3,4. More...
 
std::vector< T > NegZeta
 zeta(n) for n<0 and n odd. More...
 
std::vector< T > Factorials
 Factorials n! (n>170 exceeds double precision). More...
 
std::vector< T > BernNum
 Bernoulli numbers of first kind, i.e. More...
 
std::vector< std::vector< T > > LiCij
 Li constants Cij/(j+1)! from eq. More...
 
std::vector< std::vector< T > > LiBn_eq59
 Li constants B_{2n}/(2n*(2n+m)!) from eq. More...
 
std::unordered_map< std::string, size_t > max_values
 Max values for available constants. More...
 

Detailed Description

template<typename numtype>
template<typename T>
struct LiSK::LiSK< numtype >::constants< T >

Constants.

Note
Collection of constants which are precomputed during initialisation and stored. If additional constants are required during runtime the existing set will be extended. Initial maximum values can be set in _init.

Constructor & Destructor Documentation

◆ constants()

template<typename numtype >
template<typename T >
LiSK::constants::constants ( const size_t  Li_n)

C'stor.

Note
Pre-compute constants needed for the evaluation of Li_n and Li_22.
Parameters
Li_nSet expected weight of classical polylogarithms

Member Data Documentation

◆ BernNum

template<typename numtype >
template<typename T >
std::vector<T> LiSK::LiSK< numtype >::constants< T >::BernNum

Bernoulli numbers of first kind, i.e.

B_1 = -1/2. The vector is {B_0,B_1,B_2n} with n=1,2,3,...

◆ Factorials

template<typename numtype >
template<typename T >
std::vector<T> LiSK::LiSK< numtype >::constants< T >::Factorials

Factorials n! (n>170 exceeds double precision).

◆ HarmNum

template<typename numtype >
template<typename T >
std::vector<T> LiSK::LiSK< numtype >::constants< T >::HarmNum

Harmonic numbers H(n) for n=1,2,3,...

◆ LiBn_eq59

template<typename numtype >
template<typename T >
std::vector<std::vector<T> > LiSK::LiSK< numtype >::constants< T >::LiBn_eq59

Li constants B_{2n}/(2n*(2n+m)!) from eq.

(5.9)

◆ LiCij

template<typename numtype >
template<typename T >
std::vector<std::vector<T> > LiSK::LiSK< numtype >::constants< T >::LiCij

Li constants Cij/(j+1)! from eq.

(5.10)

◆ max_values

template<typename numtype >
template<typename T >
std::unordered_map<std::string, size_t> LiSK::LiSK< numtype >::constants< T >::max_values

Max values for available constants.

The keys are named following the convention "n"+"vector name", e.g. nHarmNum. In addition "nweight" is set and determines the highest weigth for which the constants are computed.

◆ NegZeta

template<typename numtype >
template<typename T >
std::vector<T> LiSK::LiSK< numtype >::constants< T >::NegZeta

zeta(n) for n<0 and n odd.

All negative even n give zero

◆ PosZeta

template<typename numtype >
template<typename T >
std::vector<T> LiSK::LiSK< numtype >::constants< T >::PosZeta

zeta(n) for n=0,(1),2,3,4.

n=1 is kept but set to 0


The documentation for this struct was generated from the following files: