PARTONS/NumA++
|
Numerical Analysis C++ routines
|
▼NNumA | |
CFunctionTypeMD | Class for defining multi-dimensional functions that can be used as arguments in virtual methods |
CFunctorMD | Template class for defining multi-dimensional functions that can be used as arguments in virtual methods |
CFunctionType1D | Class for defining one-dimensional functions that can be used as arguments in virtual methods |
CFunctor1D | Template class for defining one-dimensional functions that can be used as arguments in virtual methods |
CIntegratorRegistry | |
CChebyshevAIntegrator1D | Chebyshev quadrature for computing the integral \( \int_{-1}^1 \mathrm{dx} f(x) \sqrt{1-x^2} \) |
CChebyshevBIntegrator1D | Chebyshev quadrature for computing the integral \( \int_{-1}^1 \mathrm{dx} \frac{f(x)}{\sqrt{1-x^2}} \) |
CDExpIntegrator1D | This is an implementation of the double exponential rule |
▼CGaussKronrodAdaptive | |
Cextrapolation_table | |
Cgsl_integration_workspace | |
CWorkspace | |
CGaussLegendreIntegrator1D | Gauss-Legendre quadrature |
CGaussLegendreSeStIntegrator1D | Gauss-Legendre quadrature |
CIntegrator1D | Abstract class for all integration routines |
CIntegratorType1D | Type of one-dimensional integrations (wrapper for enum) |
CQuadratureIntegrator1D | Abstract quadrature class (for fixed quadrature rules) |
CTrapezoidalIntegrator1D | Trapezoidal integration |
CTrapezoidalLogIntegrator1D | Trapezoidal integration with logarithmic step |
CChebyshev | Chebyshev expansion class |
CCubicSpline | |
CEigenUtils | Tools for the Eigen wrapper |
CLSMRSolver | LSMR solves Ax = b or min ||Ax - b|| with or without damping, using the iterative algorithm of David Fong and Michael Saunders: http://www.stanford.edu/group/SOL/software/lsmr.html |
CLinAlgUtils | Linear algebra routines such as linear solvers |
CMatrixD | Represents a two-dimensional array of double |
CMatrixComplex2D | Matrix of complex numbers of size 2x2 |
CMatrixComplex3D | Matrix of complex numbers of size 3x3 |
CMatrixComplex4D | Matrix of complex numbers of size 4x4 |
CMatrixComplexD | Matrix of complex numbers of undefined size |
CVector2D | Object representing a two-dimensional vector |
CVector3D | Object representing a three-dimensional vector |
CVector4D | Object representing a four-vector |
CVectorD | Object representing a mathematical vector |
CVectorComplex2D | Vector of complex numbers of size 2 |
CVectorComplex3D | Vector of complex numbers of size 3 |
CVectorComplex4D | Vector of complex numbers of size 4 |
CVectorComplexD | Vector of complex numbers of undefined size |
CActivationFunction | |
CActivationFunctionHyperbolic | |
CActivationFunctionLinear | |
CActivationFunctionLogistic | |
CActivationFunctionSymetricThreshold | |
CActivationFunctionThreshold | |
CActivationFunctionType | |
CCombinationFunctionType | |
CData | |
CInitializationType | |
CNeuralNetworkCellPropertyType | |
CNeuralNetworkCellType | |
CScalingFunctionType | |
CScalingModeType | |
CTrainingAlgorithmType | |
CTrainingFunctionType | |
CCombinationFunction | |
CCombinationFunctionScalarProduct | |
CNeuralNetwork | |
CInputCell | |
CNeuralNetworkCell | |
COutputCell | |
CPerceptron | |
CScalingCell | |
CTransitionCell | |
CNeuralNetworkLayer | |
CNeuralNetworkNeuron | |
CNeuralNetworkTypeRegistry | |
CScalingFunction | |
CScalingFunctionMeanStdDeviation | |
CScalingFunctionMinMax | |
CTrainingAlgorithm | |
CTrainingFunction | |
CTrainingFunctionChi2 | |
CRandomGenerator | |
CBrent | |
CNewton | The code supports on the example of the python library : scipy |
CNewtonMD | Newton method generalized to any dimension N: Solves the system G(X) = 0, where G is a regular but non-linear application \( R^N \rightarrow R^N \) |
CDifferences | Class defining absolute and relative differences for comparison of real numbers (double) |
CErrors | Class for defining estimations of absolute and relative errors |
CFunctorUtils | Utilities for Functors |
CInterval | Class defining an interval (with given bounds and step) |
CMathUtils | Miscellaneous utilities (mathematical functions, etc) |
CTolerances | Define absolute and relative tolerances for comparison of real numbers (double) and check if they are positive |
CExtrapolationTable | |
CGSLConstants | |
CGSLUtils | |
CIntegrationMethod1DStatus | |
CIntegrator | |
CIntegratorFactory |